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ARTICLE

Improving Power in Contrasting Linkage-Disequilibrium Patterns
between Cases and Controls
Tao Wang, Xiaofeng Zhu, and Robert C. Elston

Genetic association studies offer an opportunity to find genetic variants underlying complex human diseases. The success
of this approach depends on the linkage disequilibrium (LD) between markers and the disease variant(s) in a local region
of the genome. Because, in the region with a disease mutation, the LD pattern among markers may differ between cases
and controls, in some scenarios, it is useful to compare a measure of this LD, to map disease mutations. For example,
using the composite correlation to characterize the LD among markers, Zaykin et al. recently suggested an “LD contrast”
test and showed that it has high power under certain haplotype-driven disease models. Furthermore, it is likely that
individual variants observed at different positions in a gene act jointly with each other to influence the phenotype, and
the LD contrast test is also a useful method to detect such joint action. However, the LD among markers introduced by
mutations and their joint action is usually confounded by background LD, which is measured at the population level,
especially in a local region with disease mutations. Because the measures of LD that are usually used, such as the composite
correlation, represent both effects, they may not be optimal for the purpose of detecting association when high back-
ground LD exists. Here, we describe a test that improves the LD contrast test by taking into account the background LD.
Because the proposed test is developed in a regression framework, it is very flexible and can be extended to continuous
traits and to incorporate covariates. Our simulation results demonstrate the validity and substantially higher power of
the proposed method over current methods. Finally, we illustrate our new method by applying it to real data from the
International Collaborative Study on Hypertension in Blacks.
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Genetic association studies offer an opportunity to find
genetic variants underlying complex human diseases.1

Currently, with the availability of large-scale genotyping
techniques, genomewide association studies are under-
way. Nevertheless, the success of this approach relies on
the linkage disequilibrium (LD) pattern between genetic
markers, which are typically SNPs, and the functional mu-
tations in a local region of the genome. It has been shown
that LD patterns are quite variable in the genome.2–4

Various statistical methods have been developed to map
functional variants. The most direct approach is single-
marker analysis, which involves testing each SNP in turn
for association with the disease. However, this simple ap-
proach may be inefficient, because any single marker may
have limited information to predict the functional variant.
Methods that can jointly make use of multiple marker
information are therefore very useful. Multiple-marker as-
sociation analysis may depend directly on either haplo-
types or genotypes. Lack of parsimony is a major limita-
tion of the multiple-marker approach, in which a large
number of degrees of freedom is often involved in the test
statistic. It is likely that there is no single uniformly op-
timal approach to mapping complex-disease genes.

Another approach is to contrast LD patterns between
cases and controls because, in a local region that harbors
the disease variant, the extent of LD may be different be-
tween cases and controls. For example, following the work

of Nielson et al.,5 Zaykin et al.6 recently suggested a new
“LD contrast test” to compare the pairwise matrices of
disequilibrium measures between cases and controls. The
use of composite coefficients to characterize the LD pat-
tern in a local region allows their method to be robust to
Hardy-Weinberg disequilibrium (HWD), which is ex-
pected to occur in the region with the disease variant. The
LD contrast test was also suggested to test gene-gene in-
teraction.7 The rationale behind this approach is that the
joint effect of two variants would generate different LD
patterns in cases and controls.

However, the LD between two SNP markers in a trait
group, whether cases or controls, is the consequence of
both selection on the basis of the disease variant and
“background LD” due to various other factors. The use of
the usual LD coefficients, which measure the whole cor-
relation between two SNPs, may not be optimal for the
purpose of detecting association, because of noise coming
from the background LD. The most powerful measure for
contrasting LD patterns must be able to discount appro-
priately the background LD. Therefore, it is desirable to
find a new measure for capturing the local LD difference
between cases and controls. Here, we propose a new test
to overcome this problem. The proposed test is developed
under a regression model and is flexible enough to in-
corporate covariates and continuous traits. Because the
test depends directly on genotypes, it is also robust to
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HWD. Our simulation results demonstrate the validity and
substantially improved power of this new test over the LD
contrast test.

Methods

To illustrate the idea, we first consider a comparison of the LD
for two SNPs between cases and controls. There is a variety of
measures available to characterize LD in cases or controls. Fol-
lowing the notation of Zaykin et al.,6 the direct measure of the
LD coefficient is given by

D p P � P P ,AB AB A B

where is the frequency of the haplotype with alleles A and BPAB

and where and are the frequencies of alleles A and B, re-P PA B

spectively. It can be shown that is related to the PearsonDAB

correlation coefficient by

DABr p ,�P P P PA1 A2 B1 B2

where , , , and are the frequencies of the alleles 1 andP P P PA1 A2 B1 B2

2 for markers A and B. A standardized measure, which is robust
to allele frequency, is the coefficient ,8 which is given by′DAB

DAB′D p ,AB max(D )AB

where

max(D ) pAB

min[P P ,(1 � P )(1 � P )] if D ! 0A B A B AB .{ }min[P (1 � P ),(1 � P )P ] if D 1 0A B A B AB

This procedure restricts the range of between 0 and 1. Com-′D
plications in estimating the LD coefficients arise when only ge-
notype data are observed. The estimates of both and rely′D DAB AB

on the estimate of the haplotype frequency, , which requiresP̂AB

an assumption with regard to Hardy-Weinberg equilibrium. Be-
cause, in the local region with disease variants, deviation from
Hardy-Weinberg proportions is expected in both cases and con-
trols, Zaykin et al.6 suggested using composite LD measures,
which are robust to HWD. Let be the joint frequency of allelesPA/B

A and B in two different gametes, so that the composite LD co-
efficient is .9 We can see that compositeD p P � P � 2P PAB AB A/B A B

LD coefficients do not distinguish between the two possible
phases of the double heterozygotes but rather consider the de-
viation from random association. The composite correlation is
given by

DABr p ,AB �[P (1 � P ) � D ] [P (1 � P ) � D ]A A A B B B

where and are the HWD coefficients at the two loci—forD DA B

example, at marker A, , in which and are the2D p p � p p pA 11 1 11 1

frequencies of genotype 11 and allele 1. The results of Zaykin et
al.6 showed that tests based on composite correlations and com-
posite LD coefficients have similar power.

Define the observed genotype value at the diallelic locus j for
subject i as follows:

�1 if the genotype of individual i is 11
x p 0 if the genotype of individual i is 12 .ji { }

1 if the genotype of individual i is 22

The composite correlation can then be estimated by

ĵx ,xA Br̂ p ,AB 2 2�ˆ ˆj jx xA B

where, by denoting the sample means and ,¯ ¯ ˆx x j pA B x ,xA B

is the estimated covariance between¯ ¯� (x � x )(x � x )/(n � 1)Ai A Bi B

the genotype values for loci A and B and 2 2¯ĵ p � (x � x ) /(n �x Ai AA

and are the estimated variances of the2 2¯ˆ1) j p � (x � x ) /(n � 1)x Bi BB

genotype values for loci A and B, respectively.10 Now, consider
the sample mean–corrected, standardized genotype values andzAi

. Then, we can estimate the composite correlation byzBi

� z zAi Bi
r̂ p .AB n � 1

The statistic to compare the LD between cases and controls can
be given by

ˆ ˆT p r � r ,C Y N

where and are the estimated composite correlations betweenˆ ˆr rY N

marker A and B in the case and control groups, respectively. Under
the null hypothesis that no disease variant exists, is expectedTC

to be close to 0, so an unusually large or small statistic indicatesTC

the possibility of a disease variant.
Now, the statistic may be considered as equivalent to theTC

regression coefficient in a regression model that has as dependent
variable the cross-product of the standardized genotype values of
two SNPs—that is,

E(z z ) p a � bt , (1)Ai Bi i

where the predictor variable is an indicator variable for casesti

and controls and and are unknown parameters to be esti-a b

mated. The parameter describes the relationship between theb

predictor variable—in our example here, the case-control classi-
fication—and the correlation between two markers (i.e., LD), so
a large or small observed value of the standardized estimate of

suggests association between the predictor (i.e., the trait) andb

two markers. The efficiency of the regression model (1) can be
seen by considering the proportion of the dependent variable’s
variance that is explained by the regression—that is, . It is useful2R
to rewrite the dependent variable of model (1) as z z p [(z �Ai Bi Ai

, which shows that the dependent variable of2 2z ) � (z � z ) ]/4Bi Ai Bi

regression model (1) is the special linear combination of the
squared sum and squared difference of genotype values at two
loci with equal weights. As discussed in the different context of
Haseman-Elston regression to detect linkage,11–13 the test based
on regression model (1) may not be efficient, because the back-
ground correlation is not taken into account. The efficiency of
regression model (1) depends on the variance of the dependent
variable explained by the trait status . Let us consider a classti
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of dependent variables defined as all linear combinations of
the squared sum and squared difference 2�w(z � z ) � (1 �Ai Bi

, where w is a weight, between 0 and 1. The most2w)(z � z )Ai Bi

efficient such dependent variable should have the least overall
variance. Let the variance of be , the variance of2 2(z � z ) jAi Bi 1

be , and the covariance between and2 2 2�(z � z ) j (z � z )Ai Bi 2 Ai Bi

be . The optimal weight can be found by solving2�(z � z ) jAi Bi 12

2 2�Var [�w(z � z ) � (w � 1)(z � z ) ]Ai Bi Ai Bi p 0 ,
�w

from which we find

2j � j2 12w p .2 2j � j � 2j1 2 12

It can be seen that it is optimal for the squared sum and squared
difference of genotype values at two loci to have equal weights
when . However, this is not expected to be the case, be-2 2j p j1 2

cause of background correlation among the multiple markers in
a local region. So, the composite correlation–based measure may
lead to a severe loss in power.

The genotype value follows a multinomial distribution that is
in the exponential family and therefore has the form ,w(x ,v ,f)ji jie
where j ( or B) denotes the marker andj p A w(x ,v ,f) p [x �ji ji ji

. Let random effects be denoted by bold letters.b(v )]/d(f) � c(x ,f)ji ji

To improve the power of regression model (1), we consider mod-
eling the genotype data as follows:

�1E(x Fu ,d ) p h (m � u � d ) ,ji ji ji j ji ji

where h is a link function, represents the genotype value ofxji

marker j for the ith subject, is the fixed overall(i p 1, … ,n) mj

intercept of the genotype value, is the marker intercept specificuji

to individual i, and is the random effect of the trait on thedji

specific genotype value. In this model, the genotype value of a
marker for a subject is determined by overall mean , which maymj

be looked at as the marginal allele frequency, the subject-specific
effects , which lead to the LD observed in a general population,uji

and the effect of the trait selection, which introduces the ad-dji

ditional LD of interest. Under this model, the background LD is
modeled by , and is a random vector with meanu d p (d ,d )ji i Ai Bi

0 and covariance matrix modeled as

1 J(t )di 2R p j ,( )J(t )d 1i

where is a function of the trait values. Let be the sample¯J(t ) ti

mean of the trait values, and define . Under this¯J(t ) p t � ti i

model, whether the correlation between markers (i.e., LD) is re-
lated to the trait value can be examined by testing . WeH :d p 00

consider a canonical link function. The score statistic, which is
the first derivative with respect to evaluated at the null hy-d

pothesis, is (see appendix A)

U p [x � E(x )][(x � E(x )]J(t ) ,� Ai Ai Bi Bi i
i

where and are the genotype values of two markers for in-x xAi Bi

dividual . Let . The mean in which′i m p m � u E(x ) p b (m ),ji j ji ji ji

or B, depends on , which is unknown. So, we approximatej p A mji

the score statistic by using an estimate of the mean of ,xji

ˆ ˆU p [x � E(x )][(x � E(x )]J(t ) . (2)� Ai Ai Bi Bi i
i

We note here that, when the genotype values are treated as
constants, , and, therefore, , so the validity ofE (J ) p 0 E(U) p 0i

this statistic is not affected by the estimation of , regardlessE(x )ji

of the value of . However, the value of influences theˆ ˆE(x ) E(x )ji ji

power. There are several estimates available. One possibility is the
sample mean of the genotype values over all subjects for each
marker obtained by ignoring the background LD. For a case-con-
trol study with standardized genotype values, the statistic (2) is
then equivalent to the composite correlation–based LD contrast
test statistic. When the background LD is strong, the variation
among individuals may be greater than the variation among
markers within an individual, and, therefore, this test is not op-
timal in terms of power. To take into account the effect , weui

use a linear mixed model to estimate . Letting be a vectorÊ(x ) Iji

of indicators for markers, which can also include appropriate co-
variates that we wish to adjust for, and bT be the corresponding
row vector of regression coefficients, the model Tx p b I � u �ji i

can be conveniently fitted using the lme function in the R�ji

package, which gives the best linear unbiased predictor (BLUP)
of . Because the BLUP takes both types of information intomji

account—the information across subjects and the information
across markers—we expect it to improve the power of statistic
(2). If there is concern over the sensitivity of the asymptotic dis-
tribution of this statistic, a simple permutation procedure that
randomly shuffles the disease status can be adopted to determine
the P value of the above statistic.

The new score statistic (2) is closely related to the composite
correlation–based LD contrast statistic. It corresponds to testing

in the regression modelb p 0 E[(x � E(x )][(x � E(x )] p1 Ai Ai Bi Bi

, and so the parameter can be expressed as the regressiona � b t d1 1 i

parameter . The statistic is equivalent to testing the regres-b T1 C

sion parameter in regression model (1). The dependentb p 0
variables of both these regression models describe the correlation
between two markers (the LD). Hence, both statistics detect as-
sociation by testing whether the trait is related to the correlation
between markers. However, with the aim of improving the power,
the proposed statistic uses a different measure to describe this
correlation, rather than using the conventional composite cor-
relation. In the new statistic, the genotype values are centered
by the individual specific means and , which absorbE(x ) E(x )Ai Bi

background LD. So, the new test is in fact a test to compare
“background-corrected LD” between cases and controls.

The comparison of the LD measure between cases and controls
for only two SNPs can be directly extended to all pairwise LD
statistics for a set of SNPs in a local region. Zaykin et al.6 showed,
in their simulation, that the most powerful statistic is based on
the overall difference of composite correlations between cases and
controls, which is given by

TT p trace[(L � L ) (L � L )] , (3)Y N Y N

where and are matrices of the composite correlations forL LY N

cases and controls, respectively. Here, we define and suchL LY N

that each element is the corresponding sum of pairwise mean-
corrected cross-products, by use of BLUPs of the means.
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Figure 1. Comparison of the empirical power for 100 controls
and 100 cases between the composite correlation–based LD con-
trast test (C), the proposed test (Mc), and the analogous statistic
(D) in which the mean is estimated by the average genotype values
of the two markers, at different background LD. The marker-allele
frequencies of the two SNPs are both 0.5. The background LD is
measured as .′D

Results
Proof of Concept

As an initial proof of concept, we first provide evidence
to show that discounting the background LD leads to in-
creased efficiency of the test, in contrasting the LD pat-
terns between cases and controls in the simplest case of
only two SNP markers. We consider a situation in which
two mutations independently occurred at a third (untyped
trait) locus on haplotypes 00 and 11. In this case, the LD
contrast test should have superior power over a single-
marker analysis, because of the weak marginal effect of
each marker, and also over a haplotype-based analysis,
because of fewer degrees of freedom.5 First, four haplotype
frequencies were determined by the allele frequencies and

, and a pair of haplotypes randomly sampled from the′D
corresponding multinomial distribution for each subject.
The disease status is defined by a model similar to that
used by Zaykin et al.6 For a dichotomous trait, the model
assumes that the trait is due to an underlying continuous
liability ( ) to which the trait-locus effects (g) and randomy
environmental effects ( ) contribute additively and inde-e
pendently: , where and are the trait-y p g � g � e g g1 2 1 2

locus effects of the two haplotypes on an individual’s y
value. The trait-locus effects are set to be 2.5 and 0.48 for
haplotypes 00 (or 11) and 01 (or 10), respectively. Affec-
tion status is defined by a threshold Z, such that all in-
dividuals with are classified as cases. The randomy 1 Z
effect is sampled from . The prevalence is set to2e N(0,7.5 )
be 0.02. We consider sampling 100 cases and 100 controls.
For each model, we simulate 1,000 data sets, and the per-
mutation test is based on 1,000 replicates of each data set.

We first consider the influence of the background LD.
We vary from 0 to 0.8. To avoid any influence of the′D
allele frequency, we choose the allele frequencies of both
SNPs to be 0.5. Figure 1 shows the empirical power and
type I error rate of three different tests for various values
of background LD, including a test statistic in which

is estimated by the average genotype values of theÊ(x )ji

two markers, (“D” in fig. 1). This sta-Ê(x ) p (x � x )/2ji Ai Bi

tistic is equivalent to using the squared Euclidean distance
between the genotype values of the markers as the de-
pendent variable in regression model (1). Intuitively,
when the background LD between two markers is high
and the two markers have similar allele frequencies, this
test is favored because the variability between markers is
less than that among subjects. Otherwise, the correlation-
based test is favored. The test proposed in this article that
uses a mixed-correlation model to estimate the correlation
of two markers is denoted “Mc” in the figures and should
have high power when there is any background LD. We
can see that all tests maintain good control of type I error
rate at the 5% significance level (fig. 1, right). Figure 1
(left) shows that the power of the correlation-based test
decreases with an increase in the background LD. As ex-
pected, we observe that the power profiles of the corre-
lation- and distance-based tests cross each other, and the

test that we propose is uniformly more powerful. Here,
we show the results of the distance-based statistic only to
illustrate that the background LD has a different impact
on the various tests. When the markers have quite differ-
ent allele frequencies, it is clear that the use of the average
of different markers to predict is not suitable. We alsomji

evaluated the power under different prevalences, finding
similar results. In figure 2, we assume that the quantitative
phenotype values y—for example, for blood pressure—of
cases and controls can be observed. Because the proposed
statistic can make use of this quantitative information, it
can further improve the power of the LD contrast test.

Power

We further compare the power of tests for a set of markers
with SNPs in a local region or candidate gene. We alsom
consider a single-marker analysis in the simulations, in
which we fit the regression one marker at a time and the
minimal P value ( ) is evaluated on the basis of a per-TP

mutation procedure by shuffling the trait values to main-
tain the dependence among the markers. For multiple-
marker analysis, we consider Hotelling’s , which jointlyTH

tests the marginal effects of multiple markers while ac-
counting for the correlations among them.

The haplotypes for and 10 correlated SNP mark-m p 4
ers are simulated on the basis of a multivariate normal
distribution with pairwise correlations . Each allele of ar

haplotype is generated by dichotomizing the marginal
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Figure 2. Comparison of the empirical power and type I error
rate for 100 controls and 100 cases between the composite cor-
relation–based LD contrast test (C) and the proposed test (QMc)
at different marker-allele frequencies when continuous phenotypes
are observed. The background LD is .′D

Figure 3. Comparison of the empirical power for 100 controls
and 100 cases with four markers at different background LD (r)
and allele frequencies (p) between the composite correlation–
based LD contrast test (C), the proposed test (Mc), the minimum
P value in single-marker analysis (minP), and Hotelling’s test of
the marginal effects of multiple markers (H).

normal distribution, and the cutoff is determined by an
allele frequency that either is set to be between 0.1 and
0.5 or is randomly sampled from a uniform distribution
between 0.1 and 0.5. The disease status is simulated as
before, in which larger effects tend to be defined by hap-
lotypes that are most different. In the power comparison,
we consider three scenarios—that is, is set to be a con-rij

stant, is , or is randomly sampled from a uni-log (1�Fi�jF)0.8
form distribution between 0.6 and 0.9. The scenario in
which equals a constant corresponds to an average pair-rij

wise correlation of 0.25 between SNPs, with each marker
providing similar information about the disease locus. The
scenario is similar to an LD pattern inlog (1�Fi�jF)r p 0.8ij

which LD is primarily a function of marker distance. How-
ever, because of population phenomena such as genetic
drift, mutation, nonrandom mating, and so forth, the ac-
tual LD pattern is more complicated; to simulate this last
scenario, we sample values from a uniform distributionr

between 0.6 and 0.9.
Here, we only show the results for markers be-m p 4

cause the results are quite similar for markers. Them p 10
type I error rates for the four tests are all close to the
nominal 0.05 level (data not shown). As seen in figure 3,
for the case of multiple markers, we find results similar to
those for the case of two markers. The proposed test usu-
ally performs better than the correlation-based test when
background correlation exists among the SNPs, and the
gain in power increases with increasing background LD.
Figures 4 and 5 further show that the proposed test has
uniformly the best performance compared with the other

three tests in our simulations with two different LD pat-
terns: LD as a function of marker distance and LD that
does not necessarily follow the distances between pairs of
markers. Because the LD contrast test detects different as-
sociation information from that detected by and , asT TH P

discussed by Zaykin et al.,6 and the marginal association
information for each marker is small in our simulation, it
is not surprising that we found much higher power for
our statistic (figs. 4 and 5).

We further performed simulations based on the real LD
pattern at the angiotension I–converting enzyme (ACE)
locus (MIM 106180). The genotype data of 13 SNPs in the
ACE locus for 310 independent subjects were selected
from the Nigeria data set of the International Collabora-
tive Study on Hypertension in Blacks.14 The LD pattern
for the 13 SNPs at the ACE locus is given in figure 6. The
squared correlation coefficient ( ) among SNPs is between2r
0 and 0.93, although most correlations among the SNPs
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Figure 4. Comparison of the empirical power for 100 controls
and 100 cases with four markers between the composite correla-
tion–based LD contrast test (C), the proposed test (Mc), the min-
imum P value in single-marker analysis (minP), and Hotelling’s
test of the marginal effects of multiple markers (H). The LD pattern
is simulated to be a function of marker distance. The marker-allele
frequency (p) is set to be 0.1–0.5 or is randomly sampled from a
uniform distribution between 0.1 and 0.5.

Figure 5. Comparison of the empirical power for 100 controls
and 100 cases with four markers between the composite correla-
tion–based LD contrast test (C), the proposed test (Mc), the min-
imum P value in single-marker analysis (minP), and Hotelling’s
test of the marginal effects of multiple markers (H). The valuesr

are sampled from a uniform distribution between 0.6 and 0.9. The
marker-allele frequency is set to be 0.1–0.5 or is randomly sampled
from a uniform distribution between 0.1 and 0.5.

are small. An underlying continuous liability value is sim-
ilarly simulated as before, and a balanced case-control data
set is determined by dichotomizing this continuous var-
iable. The empirical power for the real LD pattern for the
tests can been seen in figure 7, which shows that the pro-
posed test is most powerful in the case of this real LD
pattern.

Application to Data on ACE Levels

The rennin-angiotensin system (RAS) is known to have a
key role in blood-pressure regulation. ACE is a key com-
ponent of the RAS because it catalyzes the conversion of
angiotensin I to angiotensin II, a potent vasoconstrictor
that leads to the constriction of blood vessels and the
retention of salt and water. The ACE gene polymorphism
has been extensively studied, although a causative effect of
the ACE gene on hypertension is still not established.14–16

Bouzekri et al.17 described the association between 13 var-
iants in the ACE gene at an average distance of 2 kb apart
and the ACE plasma level in three population samples,
from Nigeria, Jamaica, and an African American com-
munity in the United States. Their results suggest that
there is more than one functional variant affecting the
ACE plasma level. However, whether these variants affect
the ACE plasma level interactively is unclear. To illustrate
the application of our method, we tested whether the LD
patterns of these 13 SNPs are different between subjects
with higher and lower ACE plasma levels. We compare

the new statistic ( ) with two other LD contrast testTMc

statistics, in which the composite LD correlation ( ) andTC

the standardized composite LD coefficient ( ) are usedT ′D

to describe the LD pattern.
The data consist of 2,776 family members from Nigeria

and Jamaica and an African American community. Our
analysis is restricted to independent subjects with non-
missing genetic data from these families, by sampling one
subject from each family. As a result, our analysis is based
on 310 subjects from Nigeria, 116 subjects from Jamaica,
and 252 subjects from the African American community.
We further created a balanced case-control data set by
equally dichotomizing the ACE level for each population.
The P values for all tests were obtained using a permu-
tation procedure with 500,000 replicates.

Table 1 presents the P values of the test statistics ,TMc

, and across the three population samples. In general,T T ′C D

we consistently observed and to have more powerT TMc C

than in the three samples, whereas also tends toT T′D Mc

show slightly stronger evidence of association than does
, which is consistent with what we observed in the sim-TC

ulation studies.

Discussion

In the present study, we extend the LD contrast test under
the framework of a generalized linear model. There are
various analytic methods developed for a genetic associ-
ation study. The LD contrast test relies on the difference
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Figure 6. The LD-pattern plot for 13 SNPs of the ACE locus. The
color scale from white (lower values) to black (higher values)
corresponds to an increase in the absolute values of correlation.

Figure 7. Comparison of the empirical power for 155 controls
and 155 cases at different genetic effects between the composite
correlation–based LD contrast test (C), the proposed test (Mc),
the minimum P value in single-marker analysis (minP), and Ho-
telling’s test of the marginal effects of multiple markers (H). The
LD pattern is from the real ACE genotype data of 310 subjects from
Nigeria. The genetic effect (X-axis) is defined as the ratio of the
genetic variance to the noise variance.

of pairwise LD among markers, rather than on the change
of the marginal allele frequencies. So, the LD contrast test
and the single-marker or multiple-marker genotype score
tests, such as Hotelling’s test, tend to detect different in-
formation available in the data. The genotype score–based
tests are likely to fail in models in which there are no
substantial marginal SNP effects. An example is seen when
susceptibility haplotypes tend to be “yin-yang” haplo-
types.18 There has been a report of an exceptional abun-
dance of this particular haplotype pattern, in which two
high-frequency haplotypes have different alleles at every
SNP site (thus the name “yin-yang haplotypes”). The LD
contrast is expected to have high power in this case. Hap-
lotypes provide more information than do the allele fre-
quencies and the pairwise LD. However, the haplotype-
based tests often involve a large number of degrees of
freedom. Because the LD extending more than two loci
decays rapidly, it is reasonable to consider the allele fre-
quencies and pairwise LD, rather than whole haplotypes,
when the number of haplotypes is too large.

Currently, the LD contrast test depends on conventional
LD measures, such as the composite correlation, to test
whether there is a significant difference in these measures
between cases and controls. One problem with the current
method is that the LD introduced by trait selection is con-
founded by the background LD. Often, background LD is
far greater than the trait-related LD in a local region of
the genome. We show by simulations that the method
proposed in this article can improve on the previous
method by taking into account the background LD. How-
ever, the new test does not replace the LD contrast tests
based on conventional LD measures. In practice, an in-
vestigator may be specifically interested in whether there
is a significant difference in a conventional LD measure
between cases and controls. In this case, the test with the
corresponding LD measure, accompanying the graphical
LD plots, is useful.

Our simulation studies suggest that the proposed test
usually performs better than the correlation-based test
when background correlation exists among SNPs. This can
be further observed in the application of the method to
ACE data in three population samples. The proposed
method tends to detect the joint effects of SNPs. Therefore,
it is understandable that we did not observe small P values
in the original report, which focused on detecting the mar-
ginal effects.17 Our analysis here was restricted to inde-
pendent subjects with nonmissing genetic data sampled
from families. The sample sizes were thus much smaller
than those used by Bouzekri et al.17 Both statistics andTMc

consistently suggested an association between the ACETC

polymorphism and plasma ACE level. However, we found
that the P values were above the 5% significance level for
all the three test statistics in the African American sample
( , , and for , , and , re-P p .073 P p .071 P p .074 T T T ′Mc C D

spectively). The less significant results obtained from the
African American sample might be because of its larger
proportion of European ancestry, resulting in different
background LD among the SNPs and therefore affecting
the power.

Another feature of the proposed method is its flexibility.
Our method can be used for both case-control and quan-
titative-trait data. When quantitative traits are observed,
such as blood pressure or blood glucose level, the quan-
titative information of cases and controls can further im-
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Table 1. Results of Different LD Contrast
Tests for the ACE Level and 13 Variants in the
ACE Locus in Samples from Nigeria, Jamaica,
and the United States

Population
Sample

Size

P

TMc TC T ′D

Nigerian 310 .0093 .0689 .6885
Jamaican 116 .0020 .0021 .1902
African American 252 .0738 .0711 .0742

prove the power of the method. Because the score statistic
is derived under the framework of a generalized linear
model, appropriate covariates, which can effectively con-
trol stratification effects that could otherwise invalidate a
permutation test,19 can also be incorporated without dif-
ficulty into both the fixed and the random effects. To
model pairwise LD, the genotype values of multiple mark-
ers are defined as correlated responses, and the trait value
is defined as the predictor variable in the generalized linear
model. The treatment of multiple markers in a cluster as
a dependent variable has already been applied to associ-
ation studies. Liang et al.20 applied generalized estimating
equations for cluster genotype data. As an alternative, we
use a mixed model to be able to separately model back-
ground LD and trait-related LD.

We have shown that the statistic , by directly com-TC

paring two correlation coefficients between cases and con-
trols, is inefficient for detecting association when back-
ground LD is not negligible. It is well known that although
valid statistics can be obtained that do not depend on
correctly modeling the correlation structure, inappropri-
ate specifications can result in a loss of efficiency. Direct
comparison of two correlation coefficients is not optimal
in terms of power, in that it does not take into account
the correlation structure. The correlation can be looked at
as a measure of the similarity between two variables. This
argument is related to the more general statistical question
of how to measure this similarity efficiently. A similar dis-
cussion can also be found among genetic linkage analyses,
in which the similarity of trait and markers among family
members is of interest.

Recently, Zhao et al.7 proposed to use the pairwise LD
contrast to detect interaction between two loci. With the
assumption that the two loci are unlinked, they showed
that interaction between two loci indeed generates LD in
the disease population and that the LD level generated by
interaction depends on the magnitude of the interaction
between the two loci. The method proposed in this article
is a good complement to their method. Our method can
improve the power because of the advantage that the
BLUP has in making use of information both across sub-
jects and across SNPs in each region. The proposed
method should be especially useful when the LD contrast
test is used to detect interaction among variants in LD,
such as different variants in a candidate gene.21

The proposed method, just like other LD contrast tests,
has limitations, as discussed by Zaykin et al.6 As found in
our simulations, the LD contrast test will fail when the
allele frequency is low. In this case, the primary associa-
tion information exists in the difference between the mar-
ginal allele frequencies. A summary measure to capture
both marginal effect and pairwise effect is desirable. We
have found, in our study, that the pairwise Euclidean dis-
tance between genotype values among markers could be
more powerful than other tests by simultaneously using
both sources of information (data not shown). However,
the gain in power of this measure depends on the un-
known trait model. Further studies are needed to find a
test that generally performs well under various reasonable
models. In summary, we have improved the LD contrast
test by taking into account the background LD. The
new test is feasible for handling continuous traits and
covariates.
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Appendix A
Derivation of the Score Statistic

We derive the score statistic for testing . The conditional likelihood function for subject isH :d p 0 i0

L (d) p f(x Fd ,u ) ,�i ji ji ji
j

where denotes the SNP in a cluster genotyped. For convenience of notation, we write as , where isj f(x Fd ,u ) f(d ) dji ji ji j j

the trait related random effects for subject . For simplicity, we omit the subject index .The Taylor series expansion ofi i
about yieldsL d p 0j

2�f (0) 1 � f (0) �f (0) �f (0)j j j k2L ≈ f (0) � d f (0) � d f (0) � d d # f (0) ,� � � � � � � �i j j k j k j k l2[ ]j �d k(j 2 �d k(j �d �d l(j,kj j j(kj j j k



www.ajhg.org The American Journal of Human Genetics Volume 80 May 2007 919

where j, k, and l denote different markers. Because the are not observed, we use the marginal likelihood by takingdj

the expectation over :dj

21 � f (0) �f (0) �f (0)j j k2 2L ≈ f (0) � j f (0) � j J(t )d # f (0) .� � � � � �i j k i l2[ ]j 2 �d k(j �d �d l(j,kj j(kj j k

Let . We havel (d ) p log [f (d )]j j j j

�f (d ) �l (d )j j j jp f (d )j j [ ]�d �dj j

2 2 2� f (d ) � l (d ) �l (d )j j j j j jp f (d ) � .j j ( )[ ]2 2�d �d �dj j j

Then,

2 ( ) ( )�l 0 �l 02 j k1 � l (d ) �l (d )j j j j2( ) ( )L ≈ f 0 1 � j [ � � J t d # .� � ( ) � �i j i2( { ] [ ]})j 2 �d �d �d �dj j(kj j j k

Assuming is known, the score statistic is the first derivative with respect to evaluated at the null hypothesis that2j d

there is no correlation introduced by trait values

� logL 1 �Li p # .
�d L �d

The likelihood function under the null hypothesis without the trait related random effect is , and thenL p � f (0)j
j

�l (0) �l (0)j k( )�� � J t d #i
j(k�logL �d �di j kp .

�d �d

If follows an exponential family distribution with a canonical link function, we havexji

( )�l 0j

[ ] ( )p x � E(x ) /a f .ji ji
�dj

Then,

�logL
( )[ ][ ]U p ∝ J t x � E(x ) x � E(x ) .� �i i ji ji ki ki

�d j(k

For two SNP markers, the score statistic is then simply given by

[ ][ ] ( )U p x � E(x ) x � E(x ) J t .� Ai Ai Bi Bi i
i

Without considering the background correlation induced by can be estimated by the sample mean. However,u , E(x )i ji

it is often not appropriate to simply omit the background correlation due to various factors, especially in a local region.
In this case, we suggest estimating by its BLUP.E(x )ji

Web Resource

The URL for data presented herein is as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for ACE locus)
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